
Mock data sensitivity studies

Chris Marshall
Lawrence Berkeley National Laboratory

2 October, 2019



Chris Marshall2

Outline

● LBL sensitivity analysis with ND: overview
● Baked-in assumptions & limitations
● Why this is not scalable to ND TDR
● Basic idea of mock data
● Advantages of mock data over full-blown sensitivity
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LBL sensitivity analysis
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Near detector strategy
for FD TDR analysis

● Generate events with GENIE, with same reweighting 
framework used in FD

● Propagate final-state particles through detector 
geometry with Geant4

● Pseudo-reconstruction based in Geant4 energy deposits

● Form LAr νμ CC samples to use in analysis
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X

Muon acceptance: contained in 
LAr or matched to MPT
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Hadronic energy reconstruction 
and containment requirement

Fully contained – 
Event accepted
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LAr ND event acceptance

● Left: CC acceptance vs. muon kinematics
● Right: Acceptance vs. hadronic energy – events with exiting 

hadrons are rejected, hence the lower efficiency at very high energy

νμ CC acceptance
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Selected ND analysis samples

FHC FHC

FHCFHC

RHC

RHCRHC
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Detector systematic uncertainties

● DUNE ND has O(100M) events → statistical 
uncertainties are negligible

● Critically important to have realistic systematics, 
despite not having a realistic simulation, 
reconstruction, or event selection

● Essentially impossible to implement detector 
uncertainties as nuisance parameters, because they will 
simply be determined in the fit
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ND uncertainty implementation in 
covariance matrix

● Construct a covariance 
matrix in (Eν, y) from 
the ND uncertainties 
with many universes 
approach

● Equivalent to including 
nuisance parameters in 
fit, but prevents these 
parameters from being 
further constrained by 
the ND data
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Drawbacks
● Uses a single ND sample – not practical to directly implement 

dozens of possible selected samples in LAr, GAr, 3DST
● With covariance matrix you lose access to parameter 

constraints – difficult to show how the ND is constraining 
uncertainties

● Implicitly assumes that interaction and detector models are 
correct and describe the data, up to the included uncertainties

● Uncertainties only impact FD when there is degeneracy – i.e. 
two parameters that have the same effect on the ND – which 
never happens when you include enough bins with no 
statistical uncertainty
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Example: MK single pion

C. Wilkinson
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ND TDR analysis goals

● For ND TDR, we want to demonstrate how the various 
components of the ND each constrain specific 
uncertainties

● To do this, we need to add additional analysis samples, 
including selected events in the HPgTPC and 3DST

● Covariance matrix for detector uncertainties does not 
scale well

● Re-implementing detector parameters in the fit will cause 
them to be overconstrained → requires many, many more 
parameters → much longer fit time (already took ~37M 
CPU hours)
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How it works in experiments

● ND data will not be described by our model
● We will modify our model to describe the ND data in 

many different projections, and add systematic 
uncertainties for the many different ways this can be done
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Basic idea of mock data studies

● Use an alternate model (i.e. not constructed by varying 
uncertainty parameters of reference model) to generate 
the “data” for ND and FD

● Determine the impact on oscillation parameters by 
fitting with FD only (or possibly FD + a limited ND)

● Demonstrate how a particular near detector sample 
clearly discriminates between the alternate and 
reference model
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Example: NuWro mock data

● Use Cris Vilela's reweighting tool to produce a mock 
data sample based on NuWro

● Fit with FD only, to show bias that could be expected 
in an experiment without a near detector

● Fit with ND+FD to show that reference model is very 
strongly disfavored
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FD-only fits

● FD-only we 
get very 
good fit, 
with χ2 ~ 10

● No evidence 
of any 
problems 
with model
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FD-only nuisance parameter post-
fits are < 0.5σ of pre-fit values 
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ND+FD fit χ2 = 10879.2
● Post-fit parameter 

uncertainties are 
shown as red bands

● Parameters get pulled 
way outside their pre-
fit ranges, with tiny 
constraints

● Fit to ND data is 
terrible – we would 
definitely know there 
is a problem, although 
we do not yet show 
how we would fix it
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Sensitivities with bias applied
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Creating mock data samples

● Historically it is difficult to produce alternate samples
● Must re-run entire simulation chain, pseudo-

reconstruction, etc. to produce analyzable files
● Cris Vilela's tool makes this process very 

straightforward: see next talk
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Backups
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Flux uncertainties
● Flux uncertainties due to hadron production, beam 

focusing, and alignment are evaluated, including strong 
correlations between bins, beam modes, neutrino flavors
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Principal component analysis is 
used to improve performance

● The largest HP & 
focusing uncertainties 
show up as principal 
components of the full 
covariance matrix

● Validates that our 
mathematical trick to 
diagonalize the 
uncertainty captures the 
same physics as varying 
individual parameters
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Cross section uncertainties
MaCCQE
VecFFCCQEshape
CCQEPauliSupViaKF
MaNCEL
MaCCRES
MvCCRES
MaNCRES
MvNCRES
Theta_Delta2Npi
AhtBY
BhtBY
CV1uBY
CV2uBY
FrCEx_pi
FrElas_pi
FrInel_pi
FrAbs_pi
FrPiProd_pi
FrCEx_N
FrElas_N
FrInel_N
FrAbs_N
FrPiProd_N

Mnv2p2hGaussEnhancement
MKSPP_ReWeight
E2p2h_A_nu
E2p2h_B_nu
E2p2h_A_nubar
E2p2h_B_nubar
BeRPA_A
BeRPA_B
BeRPA_D
C12ToAr40_2p2hScaling_nu
C12ToAr40_2p2hScaling_nubar
nuenuebar_xsec_ratio
nuenumu_xsec_ratio
SPPLowQ2Suppression

NR_nu_n_CC_2Pi
NR_nu_n_CC_3Pi
NR_nu_p_CC_2Pi
NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
NR_nu_n_NC_2Pi
NR_nu_n_NC_3Pi
NR_nu_p_NC_1Pi
NR_nu_p_NC_2Pi
NR_nu_p_NC_3Pi
NR_nubar_n_CC_1Pi
NR_nubar_n_CC_2Pi
NR_nubar_n_CC_3Pi
NR_nubar_p_CC_1Pi
NR_nubar_p_CC_2Pi
NR_nubar_p_CC_3Pi
NR_nubar_n_NC_1Pi
NR_nubar_n_NC_2Pi
NR_nubar_n_NC_3Pi
NR_nubar_p_NC_1Pi
NR_nubar_p_NC_2Pi
NR_nubar_p_NC_3Pi
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GENIE ReWeight
MaCCQE
VecFFCCQEshape
CCQEPauliSupViaKF
MaNCEL
MaCCRES
MvCCRES
MaNCRES
MvNCRES
Theta_Delta2Npi
AhtBY
BhtBY
CV1uBY
CV2uBY
FrCEx_pi
FrElas_pi
FrInel_pi
FrAbs_pi
FrPiProd_pi
FrCEx_N
FrElas_N
FrInel_N
FrAbs_N
FrPiProd_N

Mnv2p2hGaussEnhancement
MKSPP_ReWeight
E2p2h_A_nu
E2p2h_B_nu
E2p2h_A_nubar
E2p2h_B_nubar
BeRPA_A
BeRPA_B
BeRPA_D
C12ToAr40_2p2hScaling_nu
C12ToAr40_2p2hScaling_nubar
nuenuebar_xsec_ratio
nuenumu_xsec_ratio
SPPLowQ2Suppression

NR_nu_n_CC_2Pi
NR_nu_n_CC_3Pi
NR_nu_p_CC_2Pi
NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
NR_nu_n_NC_2Pi
NR_nu_n_NC_3Pi
NR_nu_p_NC_1Pi
NR_nu_p_NC_2Pi
NR_nu_p_NC_3Pi
NR_nubar_n_CC_1Pi
NR_nubar_n_CC_2Pi
NR_nubar_n_CC_3Pi
NR_nubar_p_CC_1Pi
NR_nubar_p_CC_2Pi
NR_nubar_p_CC_3Pi
NR_nubar_n_NC_1Pi
NR_nubar_n_NC_2Pi
NR_nubar_n_NC_3Pi
NR_nubar_p_NC_1Pi
NR_nubar_p_NC_2Pi
NR_nubar_p_NC_3Pi

GENIE reweight parameters affecting 
CC quasi-elastic
CC resonance production
CC deep inelastic scattering
Final-state interactions
Neutral currents
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DUNEint not covered in GENIE

Mnv2p2hGaussEnhancement
MKSPP_ReWeight
E2p2h_A_nu
E2p2h_B_nu
E2p2h_A_nubar
E2p2h_B_nubar
BeRPA_A
BeRPA_B
BeRPA_D
C12ToAr40_2p2hScaling_nu
C12ToAr40_2p2hScaling_nubar
nuenuebar_xsec_ratio
nuenumu_xsec_ratio
SPPLowQ2Suppression

Additional parameters:
CC QE
CC Resonance
2p2h
Scaling C→Ar
νe/νμ or νe/νe
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DUNEint not covered in GENIE
NR_nu_n_CC_2Pi
NR_nu_n_CC_3Pi
NR_nu_p_CC_2Pi
NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
NR_nu_n_NC_2Pi
NR_nu_n_NC_3Pi
NR_nu_p_NC_1Pi
NR_nu_p_NC_2Pi
NR_nu_p_NC_3Pi
NR_nubar_n_CC_1Pi
NR_nubar_n_CC_2Pi
NR_nubar_n_CC_3Pi
NR_nubar_p_CC_1Pi
NR_nubar_p_CC_2Pi
NR_nubar_p_CC_3Pi
NR_nubar_n_NC_1Pi
NR_nubar_n_NC_2Pi
NR_nubar_n_NC_3Pi
NR_nubar_p_NC_1Pi
NR_nubar_p_NC_2Pi
NR_nubar_p_NC_3Pi

Additional parameters affecting 
non-resonant pion production
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Example: charged hadron response

● Each curve represents 
the energy response 
bias in a particular 
universe, where the 
parameters have been 
chosen randomly 
consistent with the 
energy-dependent 
uncertainty
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ND CC νμ acceptance 
fractional uncertainty

● CC events are rejected when
● Muon is reconstructed as π± (low 

energy)
● Muon exits sides
● Muon exits downstream but does 

not enter gas TPC

● Acceptance is sensitive to 
detector modeling in phase space 
where muon acceptance is 
rapidly changing

● Uncertainty is evaluated as a 
function of muon momentum in 
transverse and neutrino direction 
(equivalently, energy and angle)
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Additional LAr sample:
ν+e scattering

● Pure EW process with known cross section → sensitive to flux only

● Signal is subject to kinematic constraint Eeθe
2 < 2me

● Dominant background is νe CC at low Q2

● Signal and background samples are ready, but have yet to be included 
in fit

Signal ν+e νe CC NC π0
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Additional sample: Gas TPC

● Leverage low threshold, 
excellent PID of gas TPC, 
with very different detector 
systematics

● Binned in reconstructed Eν 
separately for CC0π, 1π, >2π

● Complements LAr TPC by 
constraining some cross 
section parameters that are 
hard to access with dense LAr
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